UNIT-IV
Stability of control systems:
Routh-Hurwitz criterion- root locus- rules for the construction of root loci-
introduction to proportional- derivative and integral controllers.

A system is said to be stable, if its output is under control. Otherwise, it is said to be
unstable. A stable system produces a bounded output for a given bounded input.

The following figure shows the response of a stable system.
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This is the response of first order control system for unit step input. This
response has the values between 0 and 1. So, it is bounded output. We know
that the unit step signal has the value of one for all positive values including
zero. So, it is bounded input. Therefore, the first order control system is stable
since both the input and the output are bounded.

Types of Systems based on Stability :

We can classify the systems based on stability as follows.
1) Absolutely stable system

2) Conditionally stable system

3)Marginally stable system



Absolutely Stable System::

If the system is stable for all the range of system component values, then it is known as
the absolutely stable system. The open loop control system is absolutely stable if all the
poles of the open loop transfer function present in left half of ‘s’ plane. Similarly, the
closed loop control system is absolutely stable if all the poles of the closed loop transfer
function present in the left half of the ‘s’ plane.

Conditionally Stable System::

If the system is stable for a certain range of system component values, then it is known
as conditionally stable system.

Marginally Stable System::

If the system is stable by producing an output signal with constant amplitude and
constant frequency of oscillations for bounded input, then it is known as marginally
stable system. The open loop control system is marginally stable if any two poles of the
open loop transfer function is present on the imaginary axis. Similarly, the closed loop
control system is marginally stable if any two poles of the closed loop transfer function is
present on the imaginary axis.



Routh-Hurwitz Stability Criterion::

Routh-Hurwitz stability criterion is having one necessary condition and one sufficient
condition for stability. If any control system doesn’t satisfy the necessary condition, then
we can say that the control system is unstable.

But, if the control system satisfies the necessary condition, then it may or may not be
stable. So, the sufficient condition is helpful for knowing whether the control system is

stable or not.

Necessary Condition for Routh-Hurwitz Stability::

The necessary condition is that the coefficients of the characteristic polynomial should
be positive. This implies that all the roots of the characteristic equation should have
negative real parts.

Sufficient Condition for Routh-Hurwitz Stability::

The sufficient condition is that all the elements of the first column of the Routh array
should have the same sign. This means that all the elements of the first column of the
Routh array should be either positive or negative.



Routh Array Method::

If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then the
control system is stable. If at least one root of the characteristic equation exists to the
right half of the ‘s’ plane, then the control system is unstable. So, we have to find the
roots of the characteristic equation to know whether the control system is stable or
unstable.

But, it is difficult to find the roots of the characteristic equation as order increases.

So, to overcome this problem there we have the Routh array method.

In this method, there is no need to calculate the roots of the characteristic equation.
First formulate the Routh table and find the number of the sign changes in the first
column of the Routh table.

The number of sign changes in the first column of the Routh table gives the number of
roots of characteristic equation that exist in the right half of the ‘s’ plane and the control
system is unstable.



The following table shows the Routh array of the nth order characteristic polynomial.
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1) find the stability of the control system having characteristic equation,
st +3s° +3s2 +254+1=0

Sol::

Step 1 — Verify the necessary condition for the Routh-Hurwitz stability.

All the coefficients of the characteristic polynomial, s*+3s*+3s*+2s+1  gre positive.
So, the control system satisfies the necessary condition.

Step 2 — Form the Routh array for the given characteristic polynomial.

54 1 3 1
5 3 2
2 (3x3)—(2x1) _

7 (3x1)—(0x1) a
3 3 3 3
=1



Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.
All the elements of the first column of the Routh array are positive.
There is no sign change in the first column of the Routh array.

All the 3 roots of the characteristic equation will lie on left half of the S-plane.
So, the control system is stable.

Special Cases of Routh Array ::

The two special cases are -

1) The first element of any row of the Routh’s array is zero.

2) All the elements of any row of the Routh’s array are zero.
1) First Element of any row of the Routh’s array is zero

If any row of the Routh’s array contains only the first element as zero

then replace the first element with a small positive integer, €. And then continue the
process of completing the Routh’s table. Now, find the number of sign changes in the first
column of the Routh’s table by substituting ee tends to zero.



find the stability of the control system having characteristic equation,
s*+25 +52+25+1=0
Step 1 — Verify the necessary condition for the Routh-Hurwitz stability.

All the coefficients of the characteristic polynomial, 5'+25° +5" +25+1=0

positive. So, the control system satisfied the necessary condition.

are

Step 2 — Form the Routh array for the given characteristic polynomial.
st 1 1 1

s 21 21

2 (1=1)—(1x1) 0 (1x1)—(0x1)

1 1 =1

The first element of row s? is zero. So, replace it by € and continue the process of
completing the Routh table.



5 1 1
52 € 1
gl (ex1)—(1x1) _ -1

€ €
50 1

Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.
As € tends to zero, the Routh table becomes like this.



There are two sign changes in the first column of Routh table. Hence, the control
system is unstable.

2) All the Elements of any row of the Routh’s array are zero
In this case, follow these two steps -
Write the auxilary equation, A(s) of the row, which is just above the row of zeros.

Differentiate the auxiliary equation, A(s) with respect to s. Fill the row of zeros with these
coefficients.



find the stability of the control system having characteristic equation,
55 4+35" +5° +3s  +54+3=0

Step 1 — Verify the necessary condition for the Routh-Hurwitz stability.

All the coefficients of the given characteristic polynomial are positive. So, the control
system satisfied the necessary condition.

Step 2 - Form the Routh array for the given characteristic polynomial.

s° 1 1 i

= =1 =1 =1

a (1=1)—(1=1) 0 (1=13—(1=1)

1 1 = 0

The row s slements hawve the common factor of 3. So, all these slements are

divided byw =
Special case (i) — Al the elements of rowr s3

equation, Als) of the row s,

are Zero. SO, wiite the auxiliary

A(s) = s? +s52 4+ 1



dA(s)

— 45° + 2s
ds
Place these coefficients in row s-.

s° 1 1
s? 1 1
s> 42 =
52 [E:x:l]l;[lxl]l — 0.5 [2}:1];[0:{1] _ 1
gl (0.5=1)—(1x2) 1.5

0.5 0.5

= —3



Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.
There are two sign changes in the first column of Routh table. Hence, the control system
is unstable.
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The above all problems are ROUTH HURWITZ criterion problems from
NAGOOR KANI TEXT BOOK

Refer text book for any doubts



Root locus Technique ::

In the Routh-Hurwitz stability criterion, we can know whether the closed loop poles are in
on left half of the ‘s’ plane or on the right half of the ‘s’ plane or on an imaginary axis. So,
we can't find the nature of the control system. To overcome this limitation, there is a
technique known as the root locus.

In the root locus diagram, we can observe the path of the closed loop poles.
Hence, we can identify the nature of the control system. In this technique, we will use an
open loop transfer function to know the stability of the closed loop control system.

The root locus technique was introduced by W.R.Evans in 1948 for the analysis of control systems.
The root locus technique is a powerful tool for adjusting the location of closed loop poles to achieve the

desired system performance by varying one or more system parameters.

The path taken by the roots of characteristic equation when open loop gain K is varied from 0 to o
are called root loci (or the path taken by a root of characteristic equation when open loop gain K is varied

from 0 to = is called root locus).



VARIOUS STEPS IN THE PROCEDURE FOR CONSTRUCTING ROOT LOCUS

Step 1 : Location of poles and zeros

Draw the real and 1mag1nary axis on an ordinary graph sheet and choose same scales both on real
and imaginary axis. _
| The poles are marked by cross "X" and zeros are marked by small circle "o". The number of root

locus branches is equal to number of poles of open loop transfer function.

Let, n = number of poles
m = number of finite zeros

Now, m root locus branches ends at finite zeros. The remaining n—m root locus branches will
end at zeros at infinity.

Step 2 : Root locus on real axis

In order to determine the part of root locus on real axis, take a test point on real axis. If the total
number of poles and zeros on the real axis to the right of this test point is odd number, then the test point
lies on the root locus. If it is even then the test point does not lie on the root locus.

| Stép 3: Angles of a.symptotes and centroid

If n is number of poles and m is number of finite zeros, then n—m root locus branches will
terminate at zeros at infinity.



These n—m root locus branches will go along an asymptotic path and meets the asymptotes at
infinity. Hence number of asymptotes is equal to number of root locus branches going to infinity.
The angles of asymptotes and the centroid are given by the following formulae. -
+180 (2 +1)

n-—m

Angles of asymptotes =

where, =0, 1,2, 3, ...... (n—m)

Sum of poles — Sum of zeros
n—m

Centroid (meeting point of asymptote with real axis) =

Step 4 : Breakaway and Breakin points

The breakaway or breakin points either lie on real axis or exist as complex conjugate pairs. If there
is a root locus on real axis between 2 poles then there exist a breakaway point. If there is a root locus on
real axis between 2 zeros then there exist a breakin point. If there is a root locus on real axis between pole
and zero then there may be or may not be breakaway or breakin point.

The breakaway and breakin point is given by roots of the equation dK/ds = 0. The roots of dK/ds=0
are actual breakaway or breakin point provided for this value of root, the gain K should be positive and

real.

Step 5 : Angle of Departure and angle of arrival

Angle of Departure } - (Sum of angles of vector to the }‘_{Sum of angles of vectors to the)

(from a complex pole A) complex pole A from other poles/ | complex pole A from zeros
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. 0, = 180°~tan
joa
6, =180°-tan™ =
C
0, = 90°
0, =tan™ =
d
8, =tan” £
> €

' Calculation of angle of departure

Angle of arrival at a} - (Sum of angles of vectors to the - )+(Sum of angles of vectors to the]

complex zero A complex zero A from all other zeros ) | complex zero A from poles



Calculation of angle of arrival

Step 6 : Point of intersection of root locus with imaginary axis

Letting s = jo in the characteristic equation and separate the real part and imaginary part. Two
equations are obtained : one by equating real part to zero and the other by equating imaginary
part to zero. Solve the two equations for ® and K: The values of ® gives the points where the
root locus crosses imaginary axis. The value of K gives the value of gain K at there crossing

points. Also this value of K is the limiting value of K for stability of the system.



A unity feedback control system has an open loop transfer function, G(s) = & P: ) Sketch the root locus:
s(s“+4s+

SOLUTION

Step 7 : To locate poles and zeros
The poles of open Ioop transfer function are the roots of the equation, s (s*+4s+13)=0.

[42
—4+v4°-4x13 =2+3

The roots of the quadratic are, s= 5

~.The poles are lying ats=0, -2 +j3 and -2 3.
Letus denote the poles as P,, P,, and P,,.

Here, P,=0, P,=-2 +j3and P,= -2 3.
The poles are marked by X (cross) as shown infig1.

Step 2 : To find the root locus on real axis

There is only one pole on real axis at the origin. Hence if we choose any test point on the negative real axis thento the
right of that point the total number of real poles and zeros is one, which is an odd number. Hence the entire negative real axis

will be part of root locus. The root locus on real axis is shown as a boid line in fig 1.

Step 3 - To find angles of asymptotes and centroid
Since there are 3 poles, the number of root locus branches are three. There is no finite zero. Hence all the three root
locus branches ends atzeros at infinity. The number of asymptotes required are three. :




o
Angles of asymptotes = i180n (‘:?H} : gl T, n-m

Heren=3,andrn=_0. g=0,1,2,3.

180

When gq=0, Angles=% = $80°

180° x 3_ _ +180°

When g=1, Angiles==

- When g=2, Angtes=i1893)(5=i300°=4_-60°

180 x7

When g=3, Angles=+= =HEP = 4807

Note : It is enough if you calctilate the required number of angles. Here it is given by firsi three values of angles. The
remaining values will be repetitions of the previous values.

Sum of poles — Sum of zeros _ 0-2+j3-2-j3-0 -4 _ ...
n-m | 3 3 :

Centroid =

The centroid is marked on real axis and from the centroid the angles of asymptotes are marked using a protractor. The
asymptotes are drawn as dotted lines as shown infig 1.



pa R’

Fig 1. Figure showing the a:vymptote, root locus on
real axis and location of poles and centroid



Step 4 : To find the breakaway and breakin points

_ K
Theclosedloop| C(s) G(s) = s(s®°+4s+13) K .
- transfer function| R(s) 1+G(s) ¢, - K s (s?+4s+13)+K
. s (s +4s+13)

The characteristic equationis, s(s?+4s+13)+K=0
;.o 8344824135 +K=0 . = K=-s%-4s5?-13s
‘ On differentiating the equation of K with respectto s we get,

dK

—=—38%+8s+13

- —(38“+8s+13)
put I _o

ds

f —(3%+8s+13)=0 =  (3s2+8s+13)=0

2—
'.sz—ad_r»/s 4x13x3 _ 133,46
2x3

Check for K: When, s =-1.33 +j1.6, the value of Kis given by,
K=—(s®+4s*+ 13s)=-[(-1.33+j1.6)° +4 (-1.33 +j1.6)*’ + 13 (-1.33 +)1.6)

# positive and real.



Also it can be shown that whens=-1 33—-11 BthevalueofKtsnotequaltoreat and positive.

Since the values of K for, s =—1.33%1.6, are not real and positive, these points are not an actual breakaway or breakin
points. The rootlocus hasneither breakaway nor breakin point.

Step 5 : To find the angle of departure

Let us consider the complex:pole p, shown in fig 4.22.2. Draw vectors from all other poles to the pole p, as shown in
fig 4.22.2. L et the angles of these vectors be 6, and 6,.

Here, 0, =180° -tan"(3/2)=123.7° ; 6,=90°

Angle of departure from the complex pole p, = 180°— (0, +6,)
; =180° - (123.7° + 90°)

D Ja
3 "3
T# S-plane
3 9-,
v -
-2 2 P o
i

P ¥

Fig 4.22.2



Theangle of departure at oomplex polep, is neganve of the angle of departure at

complexpoleA

. Angle of departure at pole p, = + 33.7°

Mark the angles of departure at complex poles using protractor,

Step 6  To find the crossing point on imaginary axis

The characteristic equation is given by,
$3+4s?+13s + K=0

Puts =jo

(jo) +4(oP+13(0) +K=0 =—jo’40?+13jo +K=0

On equating imaginary part to zero, we get,

-°+130=0
-@* =-130
©? =13 = o=+/13=136

On equating real part to zero,
~40?+K = 0
K = 402
=4x13 = 52



- MR g N -

|

The crossing point of rootlocusis + j3.6. The value of K at this crossing pointis K=52. (This is the limiting value of K
-~ for the stability of the system). ~

The complete root locus sketch is shown in fig 4.22.3. The roct locus has three branches one branch starts at the pole
atorigin and travel through negative real axis to meet the zero at infinity. The other two root locus branches starts at complex
poles (along the angle of departure), crosses the imaginary axis at + j3.6 and travel parallel to asymptotes to meet the zeros
atinfinity. : '
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Refer the textbook for remaining problems of
root locus
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